Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
JACC Heart Fail ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38639697

RESUMO

BACKGROUND: Although sodium glucose co-transporter 2 inhibitors (SGLT2is) improve heart failure (HF)-related symptoms and outcomes in HF with preserved ejection fraction (HFpEF), underlying mechanisms remain unclear. In HF with reduced EF, dapagliflozin altered ketone and fatty acid metabolites vs placebo; however, metabolite signatures of SGLT2is have not been well elucidated in HFpEF. OBJECTIVES: The goal of this study was to assess whether SGLT2i treatment altered systemic metabolic pathways and their relationship to outcomes in HFpEF. METHODS: Targeted profiling of 64 metabolites was performed from 293 participants in PRESERVED-HF (Dapagliflozin in PRESERVED Ejection Fraction Heart Failure), a 12-week, placebo-controlled trial of dapagliflozin. Linear regression assessed changes in metabolite factors defined by principal components analysis (PCA) with dapagliflozin vs placebo. The relationship between changes in metabolite factors with changes in study endpoints was also assessed. RESULTS: The mean age was 70 ± 11 years, 58% were female, and 29% were Black. There were no significant differences in 12 PCA-derived metabolite factors between treatment arms, including metabolites reflecting ketone, fatty acid, or branched-chain amino acid (BCAA) pathways. Combining treatment arms, changes in BCAAs and branched-chain ketoacids were negatively associated with changes in N-terminal pro-B-type natriuretic peptide; changes in medium-/long-chain acylcarnitines were positively associated with changes in N-terminal pro-B-type natriuretic peptide and negatively associated with changes in 6-minute walk test distance; and changes in ketones were negatively associated with changes in weight, without treatment interaction. CONCLUSIONS: Leveraging targeted metabolomics in a placebo-controlled SGLT2i trial of HFpEF, dapagliflozin did not alter systemic metabolic as reflected by circulating metabolites, in contrast with reported effects in HF with reduced ejection fraction. Metabolite biomarkers reflecting BCAA, ketone, and fatty acid metabolism were associated with markers of disease severity, suggesting a role for potential novel treatment targets. (Dapagliflozin in PRESERVED Ejection Fraction Heart Failure [PRESERVED-HF]; NCT03030235).

2.
Cancers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610937

RESUMO

The vaginal microbiome differs by race and contributes to inflammation by directly producing or consuming metabolites or by indirectly inducing host immune response, but its potential contributions to ovarian cancer (OC) disparities remain unclear. In this exploratory cross-sectional study, we examine whether vaginal fluid metabolites differ by race among patients with OC, if they are associated with systemic inflammation, and if such associations differ by race. Study participants were recruited from the Ovarian Cancer Epidemiology, Healthcare Access, and Disparities Study between March 2021 and September 2022. Our study included 36 study participants with ovarian cancer who provided biospecimens; 20 randomly selected White patients and all 16 eligible Black patients, aged 50-70 years. Acylcarnitines (n = 45 species), sphingomyelins (n = 34), and ceramides (n = 21) were assayed on cervicovaginal fluid, while four cytokines (IL-1ß, IL-10, TNF-α, and IL-6) were assayed on saliva. Seven metabolites showed >2-fold differences, two showed significant differences using the Wilcoxon rank-sum test (p < 0.05; False Discovery Rate > 0.05), and 30 metabolites had coefficients > ±0.1 in a Penalized Discriminant Analysis that achieved two distinct clusters by race. Arachidonoylcarnitine, the carnitine adduct of arachidonic acid, appeared to be consistently different by race. Thirty-eight vaginal fluid metabolites were significantly correlated with systemic inflammation biomarkers, irrespective of race. These findings suggest that vaginal fluid metabolites may differ by race, are linked with systemic inflammation, and hint at a potential role for mitochondrial dysfunction and sphingolipid metabolism in OC disparities. Larger studies are needed to verify these findings and further establish specific biological mechanisms that may link the vaginal microbiome with OC racial disparities.

3.
Nat Microbiol ; 9(4): 922-937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503977

RESUMO

Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains. To test this correlation, here we use gnotobiotic mice colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains, with or without P. copri isolates closely matching the metagenome-assembled genomes. Combining gut metagenomics and metatranscriptomics with host single-nucleus RNA sequencing and gut metabolomic analyses, we identify a key role of P. copri in metabolizing MDCF-2 glycans and uncover its interactions with other microbes including Bifidobacterium infantis. P. copri-containing consortia mediated weight gain and modulated energy metabolism within intestinal epithelial cells. Our results reveal structure-function relationships between MDCF-2 and members of the gut microbiota of malnourished children with potential implications for future therapies.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Microbiota , Prevotella , Criança , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/genética , Aumento de Peso
4.
Diabetologia ; 67(5): 895-907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367033

RESUMO

AIMS/HYPOTHESIS: Physiological gestational diabetes mellitus (GDM) subtypes that may confer different risks for adverse pregnancy outcomes have been defined. The aim of this study was to characterise the metabolome and genetic architecture of GDM subtypes to address the hypothesis that they differ between GDM subtypes. METHODS: This was a cross-sectional study of participants in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study who underwent an OGTT at approximately 28 weeks' gestation. GDM was defined retrospectively using International Association of Diabetes and Pregnancy Study Groups/WHO criteria, and classified as insulin-deficient GDM (insulin secretion <25th percentile with preserved insulin sensitivity) or insulin-resistant GDM (insulin sensitivity <25th percentile with preserved insulin secretion). Metabolomic analyses were performed on fasting and 1 h serum samples in 3463 individuals (576 with GDM). Genome-wide genotype data were obtained for 8067 individuals (1323 with GDM). RESULTS: Regression analyses demonstrated striking differences between the metabolomes for insulin-deficient or insulin-resistant GDM compared to those with normal glucose tolerance. After adjustment for covariates, 33 fasting metabolites, including 22 medium- and long-chain acylcarnitines, were uniquely associated with insulin-deficient GDM; 23 metabolites, including the branched-chain amino acids and their metabolites, were uniquely associated with insulin-resistant GDM; two metabolites (glycerol and 2-hydroxybutyrate) were associated with the same direction of association with both subtypes. Subtype differences were also observed 1 h after a glucose load. In genome-wide association studies, variants within MTNR1B (rs10830963, p=3.43×10-18, OR 1.55) and GCKR (rs1260326, p=5.17×10-13, OR 1.43) were associated with GDM. Variants in GCKR (rs1260326, p=1.36×10-13, OR 1.60) and MTNR1B (rs10830963, p=1.22×10-9, OR 1.49) demonstrated genome-wide significant association with insulin-resistant GDM; there were no significant associations with insulin-deficient GDM. The lead SNP in GCKR, rs1260326, was associated with the levels of eight of the 25 fasting metabolites that were associated with insulin-resistant GDM and ten of 41 1 h metabolites that were associated with insulin-resistant GDM. CONCLUSIONS/INTERPRETATION: This study demonstrates that physiological GDM subtypes differ in their metabolome and genetic architecture. These findings require replication in additional cohorts, but suggest that these differences may contribute to subtype-related adverse pregnancy outcomes.


Assuntos
Diabetes Gestacional , Hiperglicemia , Resistência à Insulina , Feminino , Gravidez , Humanos , Glicemia/metabolismo , Resistência à Insulina/genética , Resultado da Gravidez , Teste de Tolerância a Glucose , Estudo de Associação Genômica Ampla , Estudos Transversais , Estudos Retrospectivos , Insulina/metabolismo , Glucose/metabolismo
5.
J Clin Invest ; 134(5)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227370

RESUMO

Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.


Assuntos
Apolipoproteína L1 , Nefropatias , Compostos Organotiofosforados , Camundongos , Animais , Humanos , Apolipoproteína L1/genética , Células HEK293 , Variação Genética , Nefropatias/genética , Camundongos Transgênicos
6.
Respir Res ; 25(1): 58, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273290

RESUMO

BACKGROUND: The circulating metabolome, reflecting underlying cellular processes and disease biology, has not been fully characterized in patients with idiopathic pulmonary fibrosis (IPF). We evaluated whether circulating levels of metabolites correlate with the presence of IPF, with the severity of IPF, or with the risk of clinically relevant outcomes among patients with IPF. METHODS: We analyzed enrollment plasma samples from 300 patients with IPF in the IPF-PRO Registry and 100 individuals without known lung disease using a set of targeted metabolomics and clinical analyte modules. Linear regression was used to compare metabolite and clinical analyte levels between patients with IPF and controls and to determine associations between metabolite levels and measures of disease severity in patients with IPF. Unadjusted and adjusted univariable Cox regression models were used to evaluate associations between circulating metabolites and the risk of mortality or disease progression among patients with IPF. RESULTS: Levels of 64 metabolites and 5 clinical analytes were significantly different between patients with IPF and controls. Among analytes with greatest differences were non-esterified fatty acids, multiple long-chain acylcarnitines, and select ceramides, levels of which were higher among patients with IPF versus controls. Levels of the branched-chain amino acids valine and leucine/isoleucine were inversely correlated with measures of disease severity. After adjusting for clinical factors known to influence outcomes, higher levels of the acylcarnitine C:16-OH/C:14-DC were associated with all-cause mortality, lower levels of the acylcarnitine C16:1-OH/C14:1DC were associated with all-cause mortality, respiratory death, and respiratory death or lung transplant, and higher levels of the sphingomyelin d43:2 were associated with the risk of respiratory death or lung transplantation. CONCLUSIONS: IPF has a distinct circulating metabolic profile characterized by increased levels of non-esterified fatty acids, long-chain acylcarnitines, and ceramides, which may suggest a more catabolic environment that enhances lipid mobilization and metabolism. We identified select metabolites that were highly correlated with measures of disease severity or the risk of disease progression and that may be developed further as biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov; No: NCT01915511; URL: www. CLINICALTRIALS: gov .


Assuntos
Carnitina , Fibrose Pulmonar Idiopática , Humanos , Carnitina/análogos & derivados , Ceramidas , Progressão da Doença , Ácidos Graxos , Fibrose Pulmonar Idiopática/metabolismo , Metaboloma , Sistema de Registros
7.
Obesity (Silver Spring) ; 32(2): 304-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962326

RESUMO

OBJECTIVE: This observational study investigated metabolomic changes in individuals with type 2 diabetes (T2D) after weight loss. We hypothesized that metabolite changes associated with T2D-relevant phenotypes are signatures of improved health. METHODS: Fasting plasma samples from individuals undergoing bariatric surgery (n = 71 Roux-en-Y gastric bypass [RYGB], n = 22 gastric banding), lifestyle intervention (n = 66), or usual care (n = 14) were profiled for 139 metabolites before and 2 years after weight loss. Principal component analysis grouped correlated metabolites into factors. Association of preintervention metabolites was tested with preintervention clinical features and changes in T2D markers. Association between change in metabolites/metabolite factors and change in T2D remission markers, homeostasis model assessment of ß-cell function, homeostasis model assessment of insulin resistance, and glycated hemoglobin (HbA1c) was assessed. RESULTS: Branched-chain amino acids (BCAAs) were associated with preintervention adiposity. Changes in BCAAs (valine, leucine/isoleucine) and branched-chain ketoacids were positively associated with change in HbA1c (false discovery rate q value ≤ 0.001) that persisted after adjustment for percentage weight change and RYGB (p ≤ 0.02). In analyses stratified by RYGB or other weight loss method, some metabolites showed association with non-RYGB weight loss. CONCLUSIONS: This study confirmed known metabolite associations with obesity/T2D and showed an association of BCAAs with HbA1c change after weight loss, independent of the method or magnitude of weight loss.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Humanos , Diabetes Mellitus Tipo 2/complicações , Hemoglobinas Glicadas , Obesidade/cirurgia , Obesidade/complicações , Aminoácidos de Cadeia Ramificada , Redução de Peso/fisiologia , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações
8.
Artigo em Inglês | MEDLINE | ID: mdl-38065238

RESUMO

BACKGROUND: Cardiac metabolism is altered in heart failure and ischemia-reperfusion injury states. We hypothesized that metabolomic profiling during ex situ normothermic perfusion before heart transplantation (HT) would lend insight into myocardial substrate utilization and report on subclinical and clinical allograft dysfunction risk. METHODS: Metabolomic profiling was performed on serial samples of ex situ normothermic perfusate assaying biomarkers of myocardial injury in lactate and cardiac troponin I (TnI) as well as metabolites (66 acylcarnitines, 15 amino acids, nonesterified fatty acids [NEFA], ketones, and 3-hydroxybutyrate). We tested for change over time in injury biomarkers and metabolites, along with differential changes by recovery strategy (donation after circulatory death [DCD] vs donation after brain death [DBD]). We examined associations between metabolites, injury biomarkers, and primary graft dysfunction (PGD). Analyses were performed using linear mixed models adjusted for recovery strategy, assay batch, donor-predicted heart mass, and time. RESULTS: A total of 176 samples from 92 ex situ perfusion runs were taken from donors with a mean age of 35 (standard deviation 11.3) years and a median total ex situ perfusion time of 234 (interquartile range 84) minutes. Lactate trends over time differed significantly by recovery strategy, while TnI increased during ex situ perfusion regardless of DCD vs DBD status. We found fuel substrates were rapidly depleted during ex situ perfusion, most notably the branched-chain amino acids leucine/isoleucine, as well as ketones, 3-hydroxybutyrate, and NEFA (least squares [LS] mean difference from the first to last time point -1.7 to -4.5, false discovery rate q < 0.001). Several long-chain acylcarnitines (LCAC), including C16, C18, C18:1, C18:2, C18:3, C20:3, and C20:4, increased during the perfusion run (LS mean difference 0.42-0.67, q < 0.001). Many LCACs were strongly associated with lactate and TnI. The change over time of many LCACs was significantly different for DCD vs DBD, suggesting differential trends in fuel substrate utilization by ischemic injury pattern. Changes in leucine/isoleucine, arginine, C12:1-OH/C10:1-DC, and C16-OH/C14-DC were associated with increased odds of moderate-severe PGD. Neither end-of-run nor change in lactate or TnI was associated with PGD. CONCLUSIONS: Metabolomic profiling of ex situ normothermic perfusion solution reveals a pattern of fuel substrate utilization that correlates with subclinical and clinical allograft dysfunction. This study highlights a potential role for interventions focused on fuel substrate modification in allograft conditioning during ex situ perfusion to improve allograft outcomes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38066593

RESUMO

OBJECTIVES: Insulin resistance is associated with elevations in plasma branched-chain amino acids (BCAAs). BCAAs compete with aromatic amino acids (AAA) including tryptophan for uptake into ß-cells. To explore relationships between BCAAs and tryptophan metabolism, adiposity, and glucose tolerance we compared urine metabolites in overweight/obese youth with T2D to those in non-diabetic overweight/obese and lean youth. METHODS: Metabolites were measured in 24-hr and first-morning urine samples of 56 non-diabetic adolescents with overweight/obesity, 42 adolescents with T2D, and 43 lean controls, ages 12-21 yr. Group differences were assessed by Kruskal Wallis or ANOVA. RESULTS: Groups were comparable for age, pubertal status, and ethnicity. Youth with T2D were predominantly female and had highest percent body fat. BCAAs, branched-chain ketoacids (BCKAs), tryptophan, and kynurenine were higher in urine of subjects with T2D. There were no differences between lean controls and non-diabetic youth with overweight/obesity. T2D was associated with diversion of tryptophan from the serotonin to the kynurenine pathway, with higher urinary kynurenine/serotonin ratio and lower serotonin/tryptophan and 5-hydroxyindoleacetic acid (5-HIAA)/kynurenine ratios. Urinary BCAAs, BCKAs, tryptophan, and ratios reflecting diversion to the kynurenine pathway correlated positively with metrics of body fat and HbA1c. Increases in these metabolites in the obese T2D group were more pronounced and statistically significant only in adolescent girls. CONCLUSIONS: Increases in urinary BCAAs and BCKAs in adolescent females with T2D are accompanied by diversion of tryptophan metabolism from the serotonin to the kynurenine pathway. These adaptations associate with higher risks of T2D in obese adolescent females than adolescent males.

10.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645712

RESUMO

Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes1-5. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period5. Bangladeshi children with moderate acute malnutrition (MAM) participating in a previously reported 3-month-long randomized controlled clinical study of one such formulation, MDCF-2, exhibited significantly improved weight gain compared to a commonly used nutritional intervention despite the lower caloric density of the MDCF6. Characterizing the 'metagenome assembled genomes' (MAGs) of bacterial strains present in the microbiomes of study participants revealed a significant correlation between accelerated ponderal growth and the expression by two Prevotella copri MAGs of metabolic pathways involved in processing of MDCF-2 glycans1. To provide a direct test of these relationships, we have now performed 'reverse translation' experiments using a gnotobiotic mouse model of mother-to-offspring microbiome transmission. Mice were colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains cultured from Bangladeshi infants/children in the study population, with or without P. copri isolates resembling the MAGs. By combining analyses of microbial community assembly, gene expression and processing of glycan constituents of MDCF-2 with single nucleus RNA-Seq and mass spectrometric analyses of the intestine, we establish a principal role for P. copri in mediating metabolism of MDCF-2 glycans, characterize its interactions with other consortium members including Bifidobacterium longum subsp. infantis, and demonstrate the effects of P. copri-containing consortia in mediating weight gain and modulating the activities of metabolic pathways involved in lipid, amino acid, carbohydrate plus other facets of energy metabolism within epithelial cells positioned at different locations in intestinal crypts and villi. Together, the results provide insights into structure/function relationships between MDCF-2 and members of the gut communities of malnourished children; they also have implications for developing future prebiotic, probiotic and/or synbiotic therapeutics for microbiome restoration in children with already manifest malnutrition, or who are at risk for this pervasive health challenge.

11.
Metabolites ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367907

RESUMO

Maternal metabolites influence the size of newborns independently of maternal body mass index (BMI) and glycemia, highlighting the importance of maternal metabolism on offspring outcomes. This study examined associations of maternal metabolites during pregnancy with childhood adiposity, and cord blood metabolites with childhood adiposity using phenotype and metabolomic data from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study and the HAPO Follow-Up Study. The maternal metabolites analyses included 2324 mother-offspring pairs, while the cord blood metabolites analyses included 937 offspring. Multiple logistic and linear regression were used to examine associations between primary predictors, maternal or cord blood metabolites, and childhood adiposity outcomes. Multiple maternal fasting and 1 hr metabolites were significantly associated with childhood adiposity outcomes in Model 1 but were no longer significant after adjusting for maternal BMI and/or maternal glycemia. In the fully adjusted model, fasting lactose levels were negatively associated with child BMI z-scores and waist circumference, while fasting urea levels were positively associated with waist circumference. One-hour methionine was positively associated with fat-free mass. There were no significant associations between cord blood metabolites and childhood adiposity outcomes. Few metabolites were associated with childhood adiposity outcomes after adjusting for maternal BMI and glucose, suggesting that maternal BMI accounts for the association between maternal metabolites and childhood adiposity.

12.
Metabolites ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37110162

RESUMO

The in utero environment is important for newborn size at birth, which is associated with childhood adiposity. We examined associations between maternal metabolite levels and newborn birthweight, sum of skinfolds (SSF), and cord C-peptide in a multinational and multi-ancestry cohort of 2337 mother-newborn dyads. Targeted and untargeted metabolomic assays were performed on fasting and 1 h maternal serum samples collected during an oral glucose tolerance test performed at 24-32 week gestation in women participating in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Anthropometric measurements were obtained on newborns at birth. Following adjustment for maternal BMI and glucose, per-metabolite analyses demonstrated significant associations between maternal metabolite levels and birthweight, SSF, and cord C-peptide. In the fasting state, triglycerides were positively associated and several long-chain acylcarnitines were inversely associated with birthweight and SSF. At 1 h, additional metabolites including branched-chain amino acids, proline, and alanine were positively associated with newborn outcomes. Network analyses demonstrated distinct clusters of inter-connected metabolites significantly associated with newborn phenotypes. In conclusion, numerous maternal metabolites during pregnancy are significantly associated with newborn birthweight, SSF, and cord C-peptide independent of maternal BMI and glucose, suggesting that metabolites in addition to glucose contribute to newborn size at birth and adiposity.

13.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778330

RESUMO

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.

15.
ISME J ; 16(11): 2479-2490, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35871250

RESUMO

Many ecosystems have been shown to retain a memory of past conditions, which in turn affects how they respond to future stimuli. In microbial ecosystems, community disturbance has been associated with lasting impacts on microbiome structure. However, whether microbial communities alter their response to repeated stimulus remains incompletely understood. Using the human gut microbiome as a model, we show that bacterial communities retain an "ecological memory" of past carbohydrate exposures. Memory of the prebiotic inulin was encoded within a day of supplementation among a cohort of human study participants. Using in vitro gut microbial models, we demonstrated that the strength of ecological memory scales with nutrient dose and persists for days. We found evidence that memory is seeded by transcriptional changes among primary degraders of inulin within hours of nutrient exposure, and that subsequent changes in the activity and abundance of these taxa are sufficient to enhance overall community nutrient metabolism. We also observed that ecological memory of one carbohydrate species impacts microbiome response to other carbohydrates, and that an individual's habitual exposure to dietary fiber was associated with their gut microbiome's efficiency at digesting inulin. Together, these findings suggest that the human gut microbiome's metabolic potential reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient. The dynamics of this ecological memory also highlight the potential for intra-individual microbiome variation to affect the design and interpretation of interventions involving the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fibras na Dieta , Microbioma Gastrointestinal/fisiologia , Humanos , Inulina , Nutrientes
16.
PLoS One ; 17(6): e0268963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700185

RESUMO

Although hematopoietic stem cell transplantation (HCT) is the only curative treatment for acute myeloid leukemia (AML), it is associated with significant treatment related morbidity and mortality. There is great need for predictive biomarkers associated with overall survival (OS) and clinical outcomes. We hypothesized that circulating metabolic, inflammatory, and immune molecules have potential as predictive biomarkers for AML patients who receive HCT treatment. This retrospective study was designed with an exploratory approach to comprehensively characterize immune, inflammatory, and metabolomic biomarkers. We identified patients with AML who underwent HCT and had existing baseline plasma samples. Using those samples (n = 34), we studied 65 blood based metabolomic and 61 immune/inflammatory related biomarkers, comparing patients with either long-term OS (≥ 3 years) or short-term OS (OS ≤ 1 years). We also compared the immune/inflammatory response and metabolomic biomarkers in younger vs. older AML patients (≤30 years vs. ≥ 55 years old). In addition, the biomarker profiles were analyzed for their association with clinical outcomes, namely OS, chronic graft versus host disease (cGVHD), acute graft versus host disease (aGVHD), infection and relapse. Several baseline biomarkers were elevated in older versus younger patients, and baseline levels were lower for three markers (IL13, SAA, CRP) in patients with OS ≥ 3 years. We also identified immune/inflammatory response markers associated with aGVHD (IL-9, Eotaxin-3), cGVHD (Flt-1), infection (D-dimer), or relapse (IL-17D, bFGF, Eotaxin-3). Evaluation of metabolic markers demonstrated higher baseline levels of medium- and long-chain acylcarnitines (AC) in older patients, association with aGVHD (lactate, long-chain AC), and cGVHD (medium-chain AC). These differentially expressed profiles merit further evaluation as predictive biomarkers.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Idoso , Quimiocina CCL26 , Humanos , Imunidade , Leucemia Mieloide Aguda/terapia , Recidiva , Estudos Retrospectivos , Condicionamento Pré-Transplante
17.
Sci Rep ; 12(1): 10631, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739205

RESUMO

There is conflicting evidence on the role of lipid biomarkers in breast cancer (BC), and no study to our knowledge has examined this association among African women. We estimated odds ratios (ORs) and 95% confidence intervals (95% CI) for the association of lipid biomarkers-total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides-with odds of BC overall and by subtype (Luminal A, Luminal B, HER2-enriched and triple-negative or TNBC) for 296 newly diagnosed BC cases and 116 healthy controls in Nigeria. Each unit standard deviation (SD) increase in triglycerides was associated with 39% increased odds of BC in fully adjusted models (aOR: 1.39; 95% CI: 1.03, 1.86). Among post-menopausal women, higher total cholesterol (aOR: 1.65; 95% CI: 1.06, 2.57), LDL cholesterol (aOR: 1.59; 95% CI: 1.04, 2.41), and triglycerides (aOR: 1.91; 95% CI: 1.21, 3.01) were associated with increased odds of BC. Additionally, each unit SD increase in LDL was associated with 64% increased odds of Luminal B BC (aOR 1.64; 95% CI: 1.06, 2.55). Clinically low HDL was associated with 2.7 times increased odds of TNBC (aOR 2.67; 95% CI: 1.10, 6.49). Among post-menopausal women, higher LDL cholesterol and triglycerides were significantly associated with increased odds of Luminal B BC and HER2 BC, respectively. In conclusion, low HDL and high LDL are associated with increased odds of TN and Luminal B BC, respectively, among African women. Future prospective studies can definitively characterize this association and inform clinical approaches targeting HDL as a BC prevention strategy.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Biomarcadores , HDL-Colesterol , LDL-Colesterol , Feminino , Humanos , Estudos Prospectivos , Fatores de Risco , Triglicerídeos , Neoplasias de Mama Triplo Negativas/epidemiologia
18.
J Laparoendosc Adv Surg Tech A ; 32(8): 817-822, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35443789

RESUMO

Background: Irisin has been recently reported to provide beneficial effects in obesity and diabetes. Elevation of high-sensitivity C-reactive protein (hs-CRP) reflects the inflammatory state that has been shown to play a key role in obesity and its comorbidities. Objective: Our study aimed to compare the changes of circulating irisin levels in an obese diabetic population who underwent laparoscopic Roux-en-Y gastric bypass (LRYGB) versus a control-matched population who underwent usual medical care plus diabetes support education (DSE) program. In addition, we aimed to explore the association between circulating irisin and hs-CRP levels after the interventions. Methods: In a prospective controlled trial, we studied 58 obese individuals with type 2 diabetes before and 12 months after intervention. Twenty-nine subjects underwent LRYGB and 29 subjects received DSE. Results: At 12-month follow-up, compared with the DSE group, patients who underwent LRYGB lost more weight (LRYGB; -33.4 ± 11.2, and DSE; 0.2 ± 4.9 kg; P < .001), fat mass (P < .001), and fat-free mass (P < .05). Circulating irisin (P < .05) and hs-CRP level (P < .05) were also significantly lower. Within the LRYGB group, the reduction of irisin level was positively associated with the changes of hs-CRP levels (r = 0.39, P < .05). Conclusions: To the best of our knowledge, this is the first study showing that LRYGB significantly reduces circulating irisin levels compared with usual medical care and DSE, in an obese diabetic population. After LRYGB, the irisin reduction significantly correlates with the reduction of hs-CRP. The elevation of circulating irisin levels suggests irisin resistance in the obese state and its decrease after LRYGB might reflect the resolution of irisin resistance. Future investigations are needed to confirm and explore the mechanisms of irisin resistance in obesity, its resolution after LRYGB, and the pathophysiological significance.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Laparoscopia , Obesidade Mórbida , Proteína C-Reativa , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/cirurgia , Fibronectinas , Humanos , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Resultado do Tratamento
19.
Ann Surg ; 275(6): 1094-1102, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258509

RESUMO

OBJECTIVE: To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. BACKGROUND: Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS: Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing 14 surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS: The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and postoperative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS: This repository allows for longitudinal, state-of-the-art geno-mic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.


Assuntos
Biologia Computacional , Proteômica , Genômica , Humanos , Metabolômica , Estudos Prospectivos , Proteômica/métodos
20.
Clin Breast Cancer ; 22(4): e463-e472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34980540

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is characterized by a cluster of biological irregularities. The purpose of this analysis was to examine the association of MetS with BC among Nigerian women, and for the first time evaluate this association by molecular subtype. MATERIALS AND METHODS: MetS was defined as having at least 3 out of 5 of: high blood pressure (≥ 130/85 mm Hg), reduced HDL (< 50 mg/dL), elevated triglyceride (> 150 mg/dL), high waist circumference (≥ 80 cm), and prior diagnosis of diabetes or elevated fasting glucose level (≥ 100 mg/dL). Among 296 newly diagnosed BC cases and 259 healthy controls, multivariable logistic regression models were utilized to estimate adjusted odds ratios (aOR) and 95% confidence intervals (95% CI) for the association between MetS and BC overall. Multinomial logistic regression models were used to evaluate each molecular subtype (Luminal A, Luminal B, HER2-enriched and triple-negative or TNBC). RESULTS: After adjusting for age, socio-demographic and reproductive risk factors, there was a positive association between MetS and BC (aOR: 1.84, 95% CI: 1.07, 3.16). In stratified analyses, MetS was associated with BC regardless of BMI status; however, the estimate was significant only among normal weight women (aOR: 3.85; 95% CI: 1.25, 11.90). MetS was significantly associated with TNBC subtype (aOR: 4.37, 95% CI: 1.67, 11.44); associations for other molecular subtypes were not statistically significant. CONCLUSION: MetS appears to be a robust risk factor for BC, particularly for TNBC. Public health and clinical interventions can provide substantial benefits in reducing the burden of MetS and preventing BC among Nigerian women.


Assuntos
Neoplasias da Mama , Síndrome Metabólica , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Razão de Chances , Fatores de Risco , Circunferência da Cintura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...